Kaiima: Improved Productivity through Enhanced Ploidy

Confidential
Presentation Outline:

• Introduction to Kaiima
• Technology
• R&D Program Overview
a next-generation seed and breeding-technology company
1. Kaiima in a nutshell

Kaiima is an innovative Israel-based breeding-technology and seed company that dramatically boosts plant productivity with its breakthrough non-GMO Enhanced Ploidy (EP™) technology platform.

Our mission is to help feed the world and energize it by introducing new varieties of key agricultural crops – specifically designed for sustainable agriculture – and with vastly improved yields.

Kaiima is addressing: a. High-impact food crops, such as wheat, rice and corn, which are critical for basic global nutrition, b. Energy crops, such as castor and sugarcane, which can scale to become a substantial part of the global energy economy, and c. Vegetables, which the Company is now selling in multiple markets around the world.

We are particularly driven to deliver on our promise in those countries and regions where the need is greatest.
Polyploidy – Nature’s Way of Enhancing Plant Productivity

“Mother of Wheat” – Diploid
(2 sets of chromosomes per cell)

Nature over 10,000 years ago

Today’s “Bread wheat” – Hexaploid

2 years with Kaiima Enhanced Ploidy platform → non-GMO high-ploidy wheat

Kaiima’s Enhanced Ploidy boosts yields

Confidential
The Team

Key Executives

Dr. Doron Gal: CEO; PhD, Stanford University; CEO of software company; energy and sustainability expert; Senior Fellow, Institute for Policy and Strategy; Lecturer (Energy) at IDC.

Amit Avidov: CTO; Chief Breeder at De Ruiter Seeds (sold to Monsanto); CEO & Chief Breeder AB Seeds; CTO, Top Seeds; CTO, Morning Seeds; More than 400 commercial varieties.

Dr. Remy Bitoun: VP BD; PhD Weizmann Inst., Head of Limagrain India, VP R&D, Hazera Genetics; VP Finance and HR at Clause Tezier

Key Investors

Kleiner Perkins, DFJ-Tel Aviv, Draper Fisher Jurvetson, Mitsui

Industry Experts:

Dr. Ganesh Kishore: Managing Director, Burrill & Co; Chief Biotechnology Officer, DuPont; Chief Biotechnologist, Monsanto (Round-up Ready project head); Member of Academy of Sciences.

Jeffrey Beard: Director General of International Baccalaureate; President, Seed Division, Syngenta; Pioneer HiBred, Director of Central European Operations.

Confidential
2. Technology: Enhanced ploidy EP™ Process

Key benefits of EP™

- Sharp increase in yield potential compared to isogenic ordinary-ploidy control
- Wider adaptability to climatic and osmotic stress
- Self-contained high-ploidy types protect local bio-diversity and stop GMO outcrossing
- Key to effective inter-specific hybridization: Restores fertility and genetic stability in long-distance crosses.
- Higher CO$_2$ intake rate
3. **Key R&D Programs**

- Wheat
- Rice
- Corn
- Castor
High-ploidy durum wheat (right) versus ordinary-ploidy control

High-ploidy bread wheat (left) versus ordinary-ploidy control
High-ploidy wheat lines display more than 100% increase in yield compared to their isogenic control (2012 single row trials: At full scale yield advantage is likely to be much lower, but still substantial)
Our wheat hybrids give 37% higher yield compared to control while the high-ploidy hybrids increase yield by 48%. (2012 small plot trials: At full scale yield advantage is likely to be lower, but still substantial)
High-ploidy hybrid versus ordinary-ploidy control

Kaima 111 – High-ploidy hybrid

Ordinary ploidy control hybrid

(pictures at same scale)
Corn yield data (small plots)

Results for early-type varieties – 23.4% advantage to high-ploidy hybrid

<table>
<thead>
<tr>
<th>Plant code</th>
<th>Plant type</th>
<th>Yield (Ton/Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>High-ploidy hybrid</td>
<td>14.73</td>
</tr>
<tr>
<td>100</td>
<td>Ordinary-ploidy hybrid</td>
<td>11.93</td>
</tr>
</tbody>
</table>

Results for mid-early-type varieties – 28.3% advantage to high-ploidy hybrids

<table>
<thead>
<tr>
<th>Plant code</th>
<th>Plant type</th>
<th>Yield (Ton/Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>203</td>
<td>High-ploidy line</td>
<td>17.98</td>
</tr>
<tr>
<td>200</td>
<td>Ordinary-ploidy parent</td>
<td>14.0</td>
</tr>
</tbody>
</table>
Cumulative carbon dioxide intake in high-ploidy versus ordinary-ploidy corn
Thank you